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GRB170817 - First confirmed off-axis GRB |
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Lessons from the aftergliow -
Successful narrow jet viewed off-axis

Superluminal motion Rapid decline post peak
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Mooley et al 18 Image from Alexander et al 18; See also:
Pooley et al. 18, Troja et al. 18, Ghirlanda et al. 18



Lessons from the aftergliow -
Successful narrow jet viewed off-axis
* Afterglow dominated by angular profile of E and I’
Initial view off-axis. With time inner material with more
energy becomes visible.
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Lessons from the aftergliow -
Successful narrow jet viewed off-axis

* Afterglow dominated by angular profile of E and I’
* Initial view off-axis. With time inner material with more
energy becomes visible.
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Lessons from the aftergliow -
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* Afterglow dominated by angular profile of E and I’

* Initial view off-axis. With time inner material with more

energy becomes visible.

3GHz x 6
— 6 GHz
optical x 200

— 1keVx2500|
09 “

v

%
Y

v

/

102
Time (d)

Light-curve increases as more
energetic material contributes




Lessons from the aftergliow -
Successful narrow jet viewed off-axis
* Afterglow dominated by angular profile of E and I’

* Initial view off-axis. With time inner material with more

energy becomes visible.
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Open question: Prompt emission
dominated by angular jet or cocoon?

Cocoon — large energy content Steep angular profile —
beyond the core but inefficient y- dominates energy radiated
ray production in y-rays
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Gottlieb et al 18 - _ Kathirgamaraju et al 18




Distributions of energy and Lorentz factor|
Simulations

Lazzati et al 18
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Evidence from long GRBs
1. Energy in X-ray afterglow roughly correlated with prompt y-rays '_

Redshift complete sample All Swift GRBs

Lxas=11Ey 52 Olog(Ly/E,)=0.51 at 1 hour

F

= 0.59

J!”E-r'-r Fx, peakt X .pvaul-c.;"f Py )
Image from Beniamini, Nava, Piran 16;
data from D’Avanzo et al. 12

Image from Beniamini & Nakar 18



Evidence from long GRBs
1. Energy in X-ray afterglow roughly correlated with prompt y-rays|

Very limiting for energy and Lorentz factor structures:
* Prompt —typically dominated by E(6)
Afterglow — Dominated by I'(6)

E, < E(0)

I'h =300.6, = 0.1 rad
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Evidence from long GRBs
1. Energy in X-ray afterglow roughly correlated with prompt y-rays|
Monte Carlo simulations limit allowed models |
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Steep structure
with rather
constant Lorentz
factor required
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Evidence from long GRBs
2. Mustn't overproduce GRBs below y-ray luminosity function peak|
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Even.if all bursts
have L, at core,
lower L bursts are
overproduced due

to bursts detectable
0 -!. | off-axis
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Evidence from long GRBs
Combining both constraints:

Steep structure
with rather
constant Lorentz |
factor required

(Lorentz factor PL profile index)
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Evidence from long GRBs
3. Even with constant I Light-curve evolution extremely peculiar

5) ; Optical

Even with constant I,|
bursts observable in|
y-rays exhibit
extended shallow
decays / plateaus
lasting tens of days

Beniaii & Nakar 18
Unlike any known
GRB (barring
GRB170817) to
date, which decay

at least as fast as
$=1/2

0F 100 100 100 100 10
Time (s)/(1+2)

Racusin et al. 16
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Evidence from long GRBs

An alternative possibility: Restrictive y-ray region

I'y = 300,6) = 0.1,tx = 1 hr
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If y-ray efficiency
drops strongly
beyond core,
results consistent

with observations
— Shock breakout
from a cocoon?



How can we test this?

For GW detected events
Ithe cocoon’s large thermal
energy is observable

| directly in UV at 102735
after GRB

(see Nakar & Piran 17; Beniamini et al. 18)

—Canonical model
E =1 0% erg
-

e 10 e However

—R,,=0.4

rapid follow-up

.._f :05

N [ on required

Nakar & Piran 17




How can we test this? — Future prospects |

Monte Carlo simulations of different structure models
 Most GW detected events up to 220Mpc undetectable in y-rays
 Between 1 (cocoon) and 10 (structured jet) joint detections in next

decade

* The distributions of L, and 8, can distinguish between models

Structured jets

Cocoons
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Beniamini, Petropoulou, Barniol Duran, Giannios 18




How can we test this? — Future prospects
e Events similar to GRB 170817 will be rare!

@ GW detected events
GW + gamma-ray detected events

110Mpc GW Horizon
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Barniol Duran, Giannios 18



Conclusions

In IGRBs, if energy drops continuously with latitude,
efficient y-ray production restricted to material with I' > 50|

Cocoon cooling emission detectable in UV at ~10%73s

SGRBs: Structured jet vs
cocoon distinguished by
L, and 6, of joint
prompt + GW events

Future events similar to
GRB 170817 will be rare

“Allowed region”
But afterglows unlike
any observed
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Backup slides




Evidence from long GRBs
1. Energy in X-ray afterglow roughly correlated with prompt y-rays|
Monte Carlo simulations limit allowed models |
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GRB opening angles from jet breaks

MO : 1
15 20 25 30
Opening Angle Bi (degrees)

Fong et al. 13



y energy ratio

X-ray luminosity to y-ra

| M Short GRBs (2)
- [ Short GRBs (no z)
| © Long GRBs
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